
Introduction

Floods are one of the most common natural hazards 
throughout the world. Therefore, flood simulation 

modeling has received increasing attention as an important 
flood forecasting tool. In order to increase a model’s 
predictive power, model reliability is always considered 
as a crucial topic in its development [1-5]. As early as 
1970, Nash and Sutcliffe stated that if it was hoped to use 
the model for watersheds without records, it was essential 
to obtain some guide to the realism of model parts and 
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Abstract
Research on the optimization of hydrological model parameters is an important issue in the field of 

hydrological forecasts, as these parameters not only directly impact the accuracy of forecast programs, but 
also relate to the development, application, and popularization of hydrological models. In this paper we 
selected the double-excess runoff generation model as the subject for research, and the data obtained from 
tens of flooding events in the Fen River Basin were used for the construction of these models. The SCE-UA 
and MOSCDE algorithms were then taken to optimize the models’ parameters. The results showed that: 
as compared with the SCE-UA algorithm, higher flood forecast accuracies were obtained through model 
parameter optimization using the MOSCDE algorithm. During the examination period, the compliance 
rate of the flood peak magnitude increased from 60% to 70%, while the compliance rate of the flood peak 
duration increased from 80% to 90%. The Nash-Sutcliffe efficiency (NSE) of the flood peak magnitudes 
increased from 0.664 to 0.878, which demonstrates an improvement in goodness-of-fit; the RMSE value 
of flood peak magnitudes also decreased from 399.8 to 236.84, thus showing a decrease in dispersion and 
an improvement in goodness-of-fit. With the continuous improvements made in hydrological parameter 
algorithms and the creation of new optimization algorithms, there is no doubt that the optimization of 
hydrological model parameters will become more reasonable.
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the accuracy of parameter values [6-10]. Hydrological 
models refer to all physical, mathematical, and logical 
structures that are constructed for studying the patterns of 
hydrological changes in hydrological phenomena and its 
processes; all physical and mathematical models related 
to hydrology are collectively known as hydrological 
models [11]. Early hydrological models were mostly 
black-box models with only inputs and outputs, and that 
do not consider the physical processes that occur within 
the catchment. If a change in the hydrological conditions 
of a catchment occurs, the parameters of a black-box 
model can be rendered unsuitable for use. Progress that 
has been made in hydrology and the expansion of the 
knowledge of hydrological phenomena, and its associated 
processes within catchments have led to the development 
of lumped conceptual hydrological models; the best-
known lumped conceptual hydrological models in the 
world are currently: the Stanford model, the Sacramento 
model, and the SCS model [12]. Research on lumped 
conceptual models in China began somewhat later than 
in the rest of the world. Nevertheless, through insights 
gathered from hydrological models around the world, a 
number of models with regional features that are suitable 
for use in local regions have been developed, with the most 
widely applied models being the Xinanjiang model, the 
double-excess model, and the Northern Shaanxi model 
[13]. The advances of global “informationization” and 
developments in space technologies have also led to the 
gradual development of distributed hydrological models, 
which include the TOPMODEL, SHE, and MIKESHE 

models [14].
In the development and application of hydrological 

models, besides difficulties in its construction and 
composition, another difficulty lies in accurately 
determining model parameters. The accuracy of model 
parameters directly affects the accuracy of hydrological 
model forecast programs, as the appropriate model 
parameters are necessary for hydrological model forecasts 
to come closer to reality. As hydrological models usually 
have a large number of parameters and are affected  
by multiple factors – such as hydrometeorological  
factors, the underlying surface, and human factors – 
hydrological models are characteristically uncertain, 
highly dimensional, highly nonlinear, and generate data 
that can be difficult to interpret. These issues make it 
difficult to ascertain the parameters of hydrological  
models [15]. Most traditional optimization algorithms 
are local optimization algorithms that are not capable 
of obtaining globally optimized parameters. These 
algorithms lack effectiveness and stability, and are 
difficult to have a good effect in practical applications. 
With the progress that has been made in scientific 
technologies and the ubiquity of computers, algorithms 
that are widely applicable and capable of performing 
global optimizations are now beginning to appear, and 
become increasingly mature.

Currently, the conceptual runoff generation model is 
maturely developed and widely used. Flood forecasting 
using this type of model can meet the accuracy 
requirements in humid areas in China. In this study, the 

Fig. 1. Schematic diagram of the double-excess runoff generation model.
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double-excess runoff generation model was selected as 
the test subject for parameter optimizations using the 
SCE-UA and MOSCDE algorithms. Through model 
optimizations using the data that was obtained from the 
tens of flood events that have occurred in the Fen River 
Basin, it was found that the MOSCDE optimization 
algorithm resulted in more accurate flood forecasts than 
the SCE-UA optimization algorithm.

Methodology

The Double-Excess Runoff Generation Model

A Brief Description of the Model

The double-excess runoff generation model was 
proposed by Wang et al. [16] following their analyses 
of runoff generation characteristics in semi-arid and 
semi-humid regions. The runoff generation theory of 
this model refers to a third runoff generation mode 
besides infiltration-excess and saturation-excess runoff 
generation: in semi-arid and semi-humid regions, the 
total runoff produced by rainfall is mainly composed of 
surface runoff, interflows, and groundwater runoff, but 
with different proportions for each part. In catchments 
that have experienced a long bout of drought, rainfalls 
with high intensity and short durations will generate 
surface runoff; since there is a lack of infiltration into 
the ground and soil interflows in this situation, surface 
runoff then becomes the sole component of total runoff. 
By contrast, the soil layer above the weakly permeable 
layer become overly saturated in catchments that have 
experienced long or repeated rainfalls, causing the 
occurrence of soil interflows. The volume of the soil 
interflow depends on the volume of water that is in excess 
of the holding capacity and the area of the catchment that 
is experiencing this excess. When soil interflows do not 
contribute to total runoff, the double-excess runoff mode 
becomes equivalent to the infiltration-excess runoff mode, 
whereas if surface runoff does not dominate total runoff, 
the double-excess runoff mode becomes equivalent to 

the saturation-excess runoff mode. In other words, the 
saturation-excess and infiltration-excess runoff modes 
represent two special cases of the double-excess runoff 
generation model [17].

The composition of the double-excess runoff 
generation model was designed according to the physical 
mechanisms of the three types of water flow, as well 
as the runoff generation modes and characteristics of 
semi-arid/semi-humid regions. This includes these five 
primary components: the fabricated historical patterns of 
infiltration capacity subunits, the distribution of filtration 
capacity in the river basin, surface runoff, soil interflows, 
soil evaporation, and pre-rain soil moisture [18].  
A schematic diagram of the double-excess model is 
shown in Fig. 1.

Model Parameters

A hydrological model is comprised of two 
components: the model’s structure and its parameters. 
The structure reflects on the basic relationships between 
rainfall and runoff and conversion rulesets, while the 
model parameters are an overall reflection of the effects 
of the catchment’s natural geographical characteristics 
on the relationship between rainfall and runoff. These 
parameters generally do not change with the model that 
is being applied, but differ according to the geographical 
region that is being analyzed [19]. The basic parameters 
of the double-excess model and their corresponding value 
ranges are shown in Table 1.

Algorithms for Optimizing Model Parameters

The SCE-UA Algorithm

The SCE-UA algorithm is a comprehensive 
optimization algorithm that was developed by Duan et al. 
[20] in 1992 on the basis of the simplex algorithm created 
by Nelder and Mead in 1965 [21], combined with the basic 
concepts of biological evolutionary principles and genetic 
algorithms that imitate nature. 

Table 1. Basic parameters of the double-excess model.
Parameter

Name Description of the parameter Units of the 
parameter Value range

SR Macroscopic absorption rate of fully-desiccated soil (L/T) 35-60

KS Macroscopic hydraulic conductivity of saturated soil (L/T) 1-15

c Pore-size grades of the soil Dimensionless 0~4

b Linearity of the watershed’s normalization curve Dimensionless Obtained from forested regions
b>1

α0 Critical rainfall intensity of the runoff Dimensionless

δi Side-row coefficients Dimensionless 0~1

JL Interception capacity of vegetation within the 
catchment [L]
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The basic principle of the SCE-UA algorithm is the 
random selection of population sample points within 
a feasible space, followed by the partitioning of the 
population into several units. Every unit contains a 
suitable number of points, and every unit is evolved based 
on a statistical “reproduction” process. After several 
generations of evolution, the entire population is re-
shuffled, and the points are reassigned to each population 
unit to ensure information sharing and to avoid falling 
into local optima. The entire population will converge 
toward the neighborhood of the global optimum after 
several generations of evolution, provided that there is 
a sufficiently large initial population size [22]. Since the 
SCE-UA algorithm uses single-objective optimization, 
the only consideration in judging the superiority or 
inferiority of each population unit is the corresponding 
objective function value of each individual population. 
Therefore, the average error is usually chosen as the 
objective function for the optimization of hydro- 
logical forecast model parameters. The procedure for 
calibrating parameters using the SCE-UA algorithm is as 
follows:
1. The rainfall runoff data of some sites in the catchment 

were sorted, and the appropriate flood events were 
selected; these were divided into calibration and 
examination periods that were then used for the 
calibration and examination of model parameters.

2. The flood event data was input into the parameter 
optimization model, and the parameter values were 
initialized within the model.

3. The double-excess model was utilized with every 
parameter value to calculate production and runoff.

4. The average error of each group of parameter values 
was calculated and adopted as the objective function 
for the optimization of model parameters.

5. The SCE-UA calculation was performed to obtain 
the optimal set of parameters through automatic 
optimization.

6. A final test was performed on each group of parameters 
using flood events in the examination period in order 
to obtain the final model parameters.

The MOSCDE Algorithm

The MOSCDE algorithm was developed by Guo et al. 
[23] in 2013 through their efforts to optimize and improve 
the SCE-UA algorithm. MOSCDE improves on some of 
the SCE-UA algorithm’s weaknesses, such as the SCE-
UA’s relative lack of speed and its reliance on singular 
objective functions. 

The MOSCDE algorithm optimizes the SCE-UA 
algorithm through the Pareto dominance framework, and 
utilizes relevant experiences of the population units in 
the evolutionary process to improve the self-regulating 
capacity and reliability of the algorithm. The MOSCDE 
algorithm also fully utilizes computational data by using 
global optimization algorithms and DE algorithms as its 
core algorithms, thus improving its convergence speed 
and computational efficiency.

Unlike the SCE-UA algorithm, the MOSCDE 
algorithm is a multi-objective optimization algorithm. 
The compliance rate of flood peaks (QR), the compliance 
rate of flood peak durations (QT), and the deterministic 
coefficient of flood events (DC) were selected as 
the objective functions for objective function value 
calculations. The procedure for optimizing model 
parameters using MOSCDE is as follows:
1. The rainfall runoff data of some site in the catchment 

was sorted, and the appropriate flood events were 
selected; these were divided into calibration and 
examination periods, which were then used for the 
calibration and examination of model parameters.

2. The flood event data were input into the parameter 
optimization model, and the parameter values were 
initiated within the model.

3. The double-excess model was utilized with every 
parameter value to calculate production and runoff.

4. The flood peak compliance rate (QR), peak duration 
compliance rate (QT), and deterministic coefficient 
(DC) were calculated for each group of parameter 
values, which were then adopted as the objective 
functions for model parameter optimization.

5. The MOSCDE calculation was performed to obtain 
the optimal set of parameters through automatic 
optimization.

6. A final examination was performed on every  
group of parameters using flood events in the 
examination period in order to obtain the final model 
parameters.

Results and Discussion

The Fen River Basin was selected as the test subject 
for double-excess modelling in this study. The rainfall 
and runoff data of the Upper Fen River Basin from 
1958 to 1989 were collected and sorted, and the 34 flood 
events that occurred within this time period were used 
for the construction of a double-excess model, in which 
the 24 flood events from 1958 to 1982 were utilized for 
calibrating the model while the 10 flood events from 
1982 to 1989 were employed for examining the model. 
The SCE-UA and MOSCDE algorithms were applied to 
optimize and calibrate the model using the 24 selected 
flood events. A comparative analysis was then performed 
on these results to select the best-performing parameter 
calibration algorithm.

Data Analysis

The Fen River Basin lies in the center of Shanxi 
Province, with a width of 188 km in an east-west  
direction, and a length of 412 km north-south. It is 
a relatively long and narrow river basin that moves  
north-south, with a total surface area of 39,471 km2 

[24]. As the basin is located within the inland region of 
the country, it has a monsoon-type mainland climate  
with highly seasonal precipitation with most of the  
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annual precipitation of the basin falling June to Sep-
tember. Due to the relatively large surface area of the 
basin, its hydrometeorological conditions are complex. 
Most floods that occur within the basin are caused by 
repeated storms that usually occur in July and August 
[25], and there is a relative abundance of information on 
flood events that have occurred within the basin. This 
study chose to use the historical hydrometeorological 
data of the Fen River basin for rainfall and evaporation 
analysis.

Rainfall Analysis and Calculations

In this study, the data from the following rainfall 
measurement stations within the Fen River basin were 
selected for analyses: Songjiaya, Ximafeng, Gezi-
dong, Kangjiahui, Xinbao, Dujia village, Huaidao, 
Dongmafang, and Tang-er. Data collected at the Jingwen 
hydrological station were also included. Average rainfall 
was then calculated using the Thiessen polygon method.

Evaporation Analysis

As there was no direct evaporation data within the 
research area, the daily evaporation data from nearby 
Fen River reservoir hydrological stations were taken as 
a reference for calculating the average evaporation per 
hour. This was used as the evaporation input of the model.

Model Parameters and Algorithm Settings

SCE-UA Parameters and Algorithm Settings

The single objective SCE-UA algorithm was applied 
to determine the parameters of the Fen River basin’s 
double-excess model, and its objective function was the 
mean square error that is commonly used for hydrological 
forecasts.

There were originally 18 parameters within the double-
excess model [26], but during the initialization process, 
the following initial parameters of the time period were 
set to zero: remaining water depth zl_1, saturation level 
B0, tension water W1, and free water S1; because the 
values of these parameters simply change continuously 
over time, only 13 parameters needed to be optimized. 
With the addition of the two parameters required by 
the Nash unit hydrograph, there were then a total of 15 
parameters that need to be determined, in practice. The 
initial model parameters of the SCE-UA algorithm are 
as follows: number of samples, m = 2n + 1; the number 
of samples selected for each subunit is: q = n + 1, q =7; 
500 iterations. The results of the parameter optimization 
performed by the SCE-UA parameter optimization model 
are shown in Table 2.

MOSCDE Parameters and Algorithm Settings

The multi-objective MOSCDE optimization algorithm 
was applied to perform a multi-objective optimization and 
calibration of the double-excess model of the Fen River 
basin. The objective functions for this optimization were 
flood peak compliance rate, peak duration compliance 
rate, and the determining coefficient.

The initialization parameters selected for the 
MOSCDE algorithm are as follows: nOfPop = 100, 
nOfCom = 2, stepsBeforeShuffle = 7, archiveSize = 100, 
DE evolutionary parameters CR = 0.2, and maxIter = 500 
[27]. After the MOSCDE model parameters were set, the 
parameter optimization calculations on runoff generation 
models may then be performed. The model parameter 
optimization results are shown in Table 3.

Selecting Performance Metrics

Compliance rate (Qr), Nash-Sutcliffe efficiency 
(NSE), and root-mean-square error (RMSE) performance 

Table 2. SCE-UA optimized parameter values.

Parameter Range Parameter Range Parameter Range Parameter Range

ω 0.652 Zlm 20.0 a0 0.019 Ks 5.878

Sr 22.925 C 10.0 B1 1.538 β0 1.277

Wm 20.0 Sm 55.718 Cc 4.986 σe 0.017

λa 0.089 n 1.0 K 2.729

Table 3. MOSCDE optimized parameter values.

 Parameter Range  Parameter  Range  Parameter  Range Parameter Range

ω 0.106 Zlm 19.98 a0 0.005 Ks 10.0

Sr 15.452 C 10.0 B1 1.684 β0 8.139

Wm 19.987 Sm 65.067 Cc 1.024 σe 0.017

λa 0.454 n 1.787 K 1.0
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Table 4. Statistical results of flood events as forecasted by the two different optimization algorithms.

Sequence of 
flood events

Flood peak Peak duration

(m2/s)
Actual 

measured 
value 
(m2/s)

SCE-UA algorithm MOSCDE algorithm SCE-UA algorithm MOSCD algorithm

Forecas-
ted value 

(m2/s)

Compara-
tive error 

(%)

Forecas-
ted value 

(m2/s)

Compara-
tive 

deviation 
(%)

Error in 
peak time 

(h)

Permis-
sible 
error 
(h)

Error in 
peak time 

(h)

Permis-
sible 
error 
(h)

C
alibration period

19580824 356 240 32.67 308 13.57 10 3 3 4.2

19580826 286 278 2.89 281 1.91 1 3 1 3

19600705 391 349 10.63 449 14.91 1 3 1 3

19610808 251 206 17.77 392 56.37 0 3 0 3.3

19620705 696 608 12.58 618 11.27 2 3 0 3

19620712 425 398 6.37 497 16.83 2 3 2 3

19660814 525 178 66.16 449 14.55 1 3 0 3

19660816 1,150 1657 44.11 1,346 17.03 1 3 1 3

19670805 1,300 1434 10.28 1,058 18.61 0 3 0 3

19670810 2,100 1,681 19.97 1183 43.67 5 3 2 3

19680726 452 483 6.9 534 18.23 1 3 2 3

19680813 232 278 19.63 350 50.85 2 3 1 3

19690729 1,400 1,125 19.66 1167 16.62 3 3 3 3

19700711 418 415 0.6 360 13.89 2 3 3 3

19730820 517 1,059 104.89 614 18.79 4 3 4 4.5

19740706 694 718 3.41 401 42.16 1 3 0 3

19770617 474 200 57.88 425 10.35 4 3 4 4.5

19770706 1,230 1,256 2.12 686 44.23 2 3 1 3

19770802 423 975 130.5 461 9.02 0 3 0 3.6

19780727 431 455 5.47 260 39.56 1 3 1 3

19790629 516 527 2.07 612 18.7 0 3 0 3

19800826 285 71 75.11 275 3.67 1 3 6 6.6

19810620 104 122 16.95 100 3.56 1 3 1 3

19820729 194 177 8.58 480 147.38 1 3 0 3

Exam
ination Period

19820730 348 1,500 331.0 411 18.13 3 3 1 3.6

19850511 1,830 1,593 12.94 1135 38 2 3 2 3.3

19850715 219 124 43.21 211 3.47 0 3 0 3

19850810 240 279 16.06 188 21.68 2 3 2 3

19850812 191 224 17.05 177 7.36 1 3 1 3

19880713 356 294 19.95 307 13.7 2 3 0 3

19880720 271 77 71.62 222 18.12 2 3 4 3

19880805 616 606 1.7 518 15.83 2 3 0 7.2

19880807 238 189.9 25.39 216 9.32 3 3 2 3

19890721 389 456 17.23 245 36.91 2 3 2 4.2
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metrics were used to evaluate the forecasting capabilities 
of the SCE-UA and MOSCDE algorithms.

The definition of Nash-Sutcliffe efficiency (NSE) 
is shown in Equation (1), where Qi refers to the actual 
measured value and Qc refers to the value forecasted by 
the model. The fit between forecasted values and actually 
measured values increases as the numerical value of the 
NSE approaches 1 [28].

The root-mean-square error (RMSE) is defined in 
Equation (2), where Qi represents the actual measured 
value while Qc represents the value forecasted by the 
model. As the RMSE value decreases, the dispersion 
decreases, which implies an improvement in the fit 
between actually measured and forecasted values [29].

Results Analysis

The 24 flood events that occurred within the calibra-
tion period were simulated and evaluated using the  
SCE-UA and MOSCDE algorithms, then taken as 
a reference for the construction of flood forecasting 
programs. The 10 flood events in 1982-1989 were then 
employed to examine the predictive accuracy of the flood 
forecasting programs; the results of this examination are 
shown in Table 4.

The 10 flood events that occurred within the inspection 
period were simulated and evaluated using the double-
excess runoff generation model by the SCE-UA and 
MOSCDE algorithms, then drew the flood hydrograph of 

Fig. 2. Comparison of model simulation and observation for 10 floods.

Table 5. A comparison of the forecast accuracies of the double-excess models optimized using the MOSCDE and SCE-UA algorithms.

Performance 
metric

Flood peak runoff Flood peak appearance

SCE-UA algorithm MOSCDE algorithm SCE-UA 
algorithm MOSCDE algorithm

Calibration
period

Examination 
period

Calibration
period

Examination 
period

Calibration
period

Examination 
period

Calibration
period

Examination 
period

Qr 70.8% 60% 75% 70% 90% 80% 100% 90%

NSE 0.733 0.664 0.664 0.878 - - - -

RMSE 241.3 399.8 256.1 236.84 - - - -
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each flood event based on forecast results (Fig. 2). From 
this figure, we can see that the results of the MOSCDE 
algorithm are closer to the measured series.

The performance metrics Qr, NSE, and RMSE were 
used to compare the forecast accuracies of double-excess 
models that were optimized using the SCE-UA and 
MOSCDE algorithms in the calibration period. These 
results are shown in Table 5.

Based on Table 5, it is shown that the multi-objective 
MOSCDE algorithm has improved the accuracy of the 
double-excess model in forecasting flood events, as shown 
by the Qr parameter. The compliance rate of the flood 
peak magnitude increased from 60% to 70%, while the 
flood peak duration compliance rate increased from 80% 
to 90%. Furthermore, during the calibration period, the 
compliance rate of the flood peak magnitude increased 
from 70.8% to 75%, while the compliance rate of the flood 
peak duration increased from 91.7% to 100%.

During the examination period, it is shown that 
the NSE of the MOSCDE algorithm is closer to 1, as 
compared with the SCE-UA algorithm, indicating a higher 
goodness-of-fit. As for the RMSE index, the MOSCDE 
algorithm also resulted in a lower RMSE value, and thus 
a lower dispersion and higher goodness-of-fit. 

From the above analyses, it is shown that the MOSCDE 
algorithm is a more optimal method for optimizing the 
parameters of double-excess runoff generation models, 
and that the forecast results produced from MOSCDE-
optimized models are also more reliable.

Conclusions

Optimizing and calibrating hydrological parameters 
has always been difficult in the field of hydrological 
forecasts, as these parameters directly affect the accuracy 
of forecasting programs and the future development and 
popularization of hydrological models. The results of this 
study showed that as we deepen our understanding of 
computers, and cross-disciplinary developments become 
more common in various fields of study, more and more 
algorithms that are based on physical theories and global 
optimization will be put forward, such as the RBF neural 
network algorithm, the ant colony optimization algo-
rithm, and the particle swarm optimization algorithm. 
Existing optimization algorithms are also being  
improved at a rapid rate; for instance, the MOSCDE 
algorithm that is the focus of this study is an improved 
version of the SCE-UA algorithm. It is believed that 
with the continuous improvement of these algorithms, 
optimizing hydrological model parameters will become 
increasingly accurate, which will in turn improve the 
accuracy of hydrological forecasting programs.
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